Properties

Label 672.974.14.b1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}:C_2$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{56}, b, c^{42}, c^{84}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_4.D_{84}$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2$
$\operatorname{Aut}(H)$ $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$D_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4.D_{12}$
Normal closure:$D_{84}:C_2$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$D_{84}:C_2$$C_4.D_{12}$
Maximal under-subgroups:$C_2\times C_{12}$$C_3:D_4$$C_4\times S_3$$D_{12}$$C_3:Q_8$$D_4:C_2$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$1$
Projective image$C_2\times D_{84}$