Properties

Label 672.827.168.b1.b1
Order $ 2^{2} $
Index $ 2^{3} \cdot 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Exponent: \(2\)
Generators: $ac^{21}, c^{42}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_7:C_{12}\times D_4$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{14}:C_{12}$
Order: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Automorphism Group: $C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{14}.(C_6\times D_4).C_2^4$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{42}.C_2^3$
Normalizer:$C_7:C_{12}\times D_4$
Complements:$C_{14}:C_{12}$ $C_{14}:C_{12}$
Minimal over-subgroups:$C_2\times C_{14}$$C_2\times C_6$$C_2^3$$D_4$$D_4$
Maximal under-subgroups:$C_2$$C_2$
Autjugate subgroups:672.827.168.b1.a1672.827.168.b1.c1672.827.168.b1.d1

Other information

Möbius function$0$
Projective image$C_{42}.C_2^3$