Subgroup ($H$) information
| Description: | $D_7\times C_{24}$ |
| Order: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| Index: | \(2\) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Generators: |
$b, c^{24}, c^{56}, c^{42}, c^{21}, c^{84}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_{24}.D_{14}$ |
| Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{28}.(C_2^5\times C_6)$ |
| $\operatorname{Aut}(H)$ | $C_2^4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
| $W$ | $D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Related subgroups
| Centralizer: | $C_{24}$ | ||||
| Normalizer: | $C_{24}.D_{14}$ | ||||
| Minimal over-subgroups: | $C_{24}.D_{14}$ | ||||
| Maximal under-subgroups: | $C_{12}\times D_7$ | $C_{168}$ | $C_7:C_{24}$ | $C_8\times D_7$ | $C_2\times C_{24}$ |
Other information
| Möbius function | $-1$ |
| Projective image | $D_4\times D_7$ |