Subgroup ($H$) information
Description: | $C_6:C_4$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$b^{7}c, c^{6}, b^{14}c^{6}, c^{4}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
Description: | $C_{12}:D_{28}$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_{14}$ |
Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Automorphism Group: | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^6\times S_3\times F_7$ |
$\operatorname{Aut}(H)$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
$W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Centralizer: | $C_2\times C_{28}$ | |||
Normalizer: | $C_{12}:D_{28}$ | |||
Minimal over-subgroups: | $C_6:C_{28}$ | $C_{12}:C_4$ | $C_6.D_4$ | $D_6:C_4$ |
Maximal under-subgroups: | $C_2\times C_6$ | $C_3:C_4$ | $C_2\times C_4$ |
Other information
Möbius function | $-14$ |
Projective image | $S_3\times D_{14}$ |