Properties

Label 672.459.6.d1.b1
Order $ 2^{4} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{56}:C_2$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $ac^{3}, b^{2}c^{42}, c^{42}, b^{3}c^{7}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{12}.D_{28}$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^4\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_{28}$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_4.D_{28}$
Normal closure:$C_{21}:\SD_{16}$
Core:$C_7:Q_8$
Minimal over-subgroups:$C_{21}:\SD_{16}$$C_4.D_{28}$
Maximal under-subgroups:$C_7:Q_8$$D_{28}$$C_{56}$$\SD_{16}$
Autjugate subgroups:672.459.6.d1.a1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_6:D_{28}$