Properties

Label 672.458.8.d1.b1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{42}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ab, c^{2}, b^{8}, b^{28}c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{42}:\SD_{16}$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $D_6\times F_7$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\card{W}$\(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times D_{42}$
Normal closure:$C_2\times D_{84}$
Core:$C_{42}$
Minimal over-subgroups:$C_2\times D_{42}$
Maximal under-subgroups:$C_{42}$$D_{21}$$D_{21}$$D_{14}$$D_6$
Autjugate subgroups:672.458.8.d1.a1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function not computed
Projective image not computed