Properties

Label 672.451.6.b1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times C_{14}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a, c^{21}, c^{12}, b^{2}, c^{42}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{84}.D_4$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2$
$\operatorname{Aut}(H)$ $C_6\times C_2^3:S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_{12}.C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(28\)\(\medspace = 2^{2} \cdot 7 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$C_{28}.D_4$
Normal closure:$C_{42}:Q_8$
Core:$C_2\times C_{28}$
Minimal over-subgroups:$C_{42}:Q_8$$C_{28}.D_4$
Maximal under-subgroups:$C_2\times C_{28}$$C_2\times C_{28}$$C_7\times Q_8$$C_7\times Q_8$$C_7\times Q_8$$C_2\times Q_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_{42}:D_4$