Subgroup ($H$) information
Description: | $C_{56}$ |
Order: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Generators: |
$c^{21}, c^{42}, c^{84}, c^{24}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{24}:D_{14}$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{84}.(C_2^5\times C_6)$ |
$\operatorname{Aut}(H)$ | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
$W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Centralizer: | $C_{168}$ | |||
Normalizer: | $C_{24}:D_{14}$ | |||
Complements: | $D_6$ $D_6$ $D_6$ $D_6$ | |||
Minimal over-subgroups: | $C_{168}$ | $D_{56}$ | $C_7\times D_8$ | $C_8\times D_7$ |
Maximal under-subgroups: | $C_{28}$ | $C_8$ |
Other information
Möbius function | $-6$ |
Projective image | $C_{12}:D_{14}$ |