Properties

Label 672.313.8.h1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_{12}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a^{3}c, c^{2}, b^{4}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $(C_2\times D_{28}):C_6$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_2^4.C_2^3$, of order \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_{14}:C_{12}$
Normal closure:$C_{14}:C_{12}$
Core:$C_7:C_6$
Minimal over-subgroups:$C_{14}:C_{12}$$C_4\times F_7$$C_4\times F_7$
Maximal under-subgroups:$C_7:C_6$$C_7:C_4$$C_{12}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{28}:C_6$