Properties

Label 672.313.8.c1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_7$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $a^{3}, a^{2}, b^{4}, b^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $(C_2\times D_{28}):C_6$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_2^4.C_2^3$, of order \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$(C_2\times D_{28}):C_6$
Complements:$D_4$ $D_4$
Minimal over-subgroups:$C_2^2\times F_7$$C_{28}:C_6$$C_{28}:C_6$
Maximal under-subgroups:$C_7:C_6$$F_7$$D_{14}$$C_2\times C_6$
Autjugate subgroups:672.313.8.c1.b1

Other information

Möbius function$0$
Projective image$D_4\times F_7$