Subgroup ($H$) information
| Description: | $C_2\times F_7$ | 
| Order: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Index: | \(8\)\(\medspace = 2^{3} \) | 
| Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) | 
| Generators: | $a^{3}, a^{2}, b^{4}, b^{14}$ | 
| Derived length: | $2$ | 
The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $(C_2\times D_{28}):C_6$ | 
| Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $D_4$ | 
| Order: | \(8\)\(\medspace = 2^{3} \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Derived length: | $2$ | 
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_7\times C_2^4.C_2^3$, of order \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \) | 
| $\operatorname{Aut}(H)$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| $\operatorname{res}(S)$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) | 
| $W$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
Related subgroups
Other information
| Möbius function | $0$ | 
| Projective image | $D_4\times F_7$ | 
