Subgroup ($H$) information
| Description: | $C_4:C_{28}$ | 
| Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) | 
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Generators: | $b^{7}, b^{4}, b^{14}, c, c^{2}$ | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $(C_2\times D_{28}):C_6$ | 
| Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_6$ | 
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Automorphism Group: | $C_2$, of order \(2\) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_7\times C_2^4.C_2^3$, of order \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \) | 
| $\operatorname{Aut}(H)$ | $C_2^5:C_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^5:C_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| $W$ | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
Related subgroups
Other information
| Möbius function | $1$ | 
| Projective image | $C_2^2\times F_7$ | 
