Subgroup ($H$) information
Description: | $C_3\times D_{28}$ |
Order: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$bd^{21}, d^{28}, d^{42}, c, d^{12}$
|
Derived length: | $2$ |
The subgroup is normal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{84}:C_2^3$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4.C_2^4.C_{21}.C_6.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
$\operatorname{res}(S)$ | $C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Related subgroups
Centralizer: | $C_2^2\times C_6$ | |||
Normalizer: | $C_{84}:C_2^3$ | |||
Complements: | $C_2^2$ $C_2^2$ | |||
Minimal over-subgroups: | $C_6\times D_{28}$ | |||
Maximal under-subgroups: | $C_3\times D_{14}$ | $C_{84}$ | $D_{28}$ | $C_3\times D_4$ |
Other information
Number of subgroups in this autjugacy class | $16$ |
Number of conjugacy classes in this autjugacy class | $16$ |
Möbius function | $2$ |
Projective image | $C_2^2\times D_{14}$ |