Properties

Label 672.1205.24.d1
Order $ 2^{2} \cdot 7 $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{28}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $bd^{63}, d^{42}, d^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{84}:C_2^3$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.C_{21}.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^2\times C_{84}$
Normalizer:$C_{84}:C_2^3$
Complements:$C_2^2\times C_6$
Minimal over-subgroups:$C_{84}$$C_2\times C_{28}$$D_{28}$
Maximal under-subgroups:$C_{14}$$C_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$8$
Projective image$C_{42}:C_2^3$