Subgroup ($H$) information
Description: | $C_{28}$ |
Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$bd^{63}, d^{42}, d^{12}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{84}:C_2^3$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2\times C_6$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4.C_2^4.C_{21}.C_6.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2^2\times C_{84}$ | ||
Normalizer: | $C_{84}:C_2^3$ | ||
Complements: | $C_2^2\times C_6$ | ||
Minimal over-subgroups: | $C_{84}$ | $C_2\times C_{28}$ | $D_{28}$ |
Maximal under-subgroups: | $C_{14}$ | $C_4$ |
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | $8$ |
Projective image | $C_{42}:C_2^3$ |