Subgroup ($H$) information
| Description: | $C_{21}$ |
| Order: | \(21\)\(\medspace = 3 \cdot 7 \) |
| Index: | \(32\)\(\medspace = 2^{5} \) |
| Exponent: | \(21\)\(\medspace = 3 \cdot 7 \) |
| Generators: |
$d^{28}, d^{12}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.
Ambient group ($G$) information
| Description: | $C_{84}.C_2^3$ |
| Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2\times Q_8$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2^6:(S_3\times S_4)$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) |
| Outer Automorphisms: | $C_2^6:S_3^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4.C_2^4.C_{21}.C_6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_2^2\times C_{84}$ | |
| Normalizer: | $C_{84}.C_2^3$ | |
| Complements: | $C_2^2\times Q_8$ | |
| Minimal over-subgroups: | $C_{42}$ | $C_{42}$ |
| Maximal under-subgroups: | $C_7$ | $C_3$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_{14}.C_2^4$ |