Subgroup ($H$) information
| Description: | $C_2^2\times C_6$ |
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$a, b, d^{42}, d^{28}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
| Description: | $C_{84}.C_2^3$ |
| Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $D_{14}$ |
| Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Automorphism Group: | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4.C_2^4.C_{21}.C_6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_{84}.C_2^3$ | ||
| Normalizer: | $C_{84}.C_2^3$ | ||
| Minimal over-subgroups: | $C_2^2\times C_{42}$ | $C_2^2\times C_{12}$ | $C_2^2\times C_{12}$ |
| Maximal under-subgroups: | $C_2\times C_6$ | $C_2\times C_6$ | $C_2^3$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-14$ |
| Projective image | $D_{14}$ |