Subgroup ($H$) information
| Description: | $C_7:C_{12}$ |
| Order: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Generators: |
$ac^{3}d^{14}, d^{14}, d^{4}, c^{2}$
|
| Derived length: | $2$ |
The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{84}.C_2^3$ |
| Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^3$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{21}\times A_4).C_6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(S)$ | $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $W$ | $C_2\times D_{14}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Related subgroups
| Centralizer: | $C_{12}$ | ||||
| Normalizer: | $C_{84}.C_2^3$ | ||||
| Minimal over-subgroups: | $C_7:D_{12}$ | $C_{12}\times D_7$ | $D_{21}:C_4$ | $C_{21}:Q_8$ | $C_{21}:Q_8$ |
| Maximal under-subgroups: | $C_{42}$ | $C_7:C_4$ | $C_{12}$ |
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | $-8$ |
| Projective image | $D_6\times D_{14}$ |