Subgroup ($H$) information
Description: | $D_7$ |
Order: | \(14\)\(\medspace = 2 \cdot 7 \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$c, d^{12}$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $D_{12}:D_{14}$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2^3$ |
$\operatorname{Aut}(H)$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
$\operatorname{res}(S)$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) |
Related subgroups
Centralizer: | $C_2\times D_6$ | |||
Normalizer: | $D_6\times D_{14}$ | |||
Normal closure: | $D_{14}$ | |||
Core: | $C_7$ | |||
Minimal over-subgroups: | $C_3\times D_7$ | $D_{14}$ | $D_{14}$ | $D_{14}$ |
Maximal under-subgroups: | $C_7$ | $C_2$ |
Other information
Number of subgroups in this autjugacy class | $8$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $D_{12}:D_{14}$ |