Subgroup ($H$) information
Description: | $C_{14}$ |
Order: | \(14\)\(\medspace = 2 \cdot 7 \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$d^{42}, d^{12}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $D_{12}:D_{14}$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2\times D_6$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3\times C_2^3:\GL(3,2)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \) |
Outer Automorphisms: | $C_2^3:\GL(3,2)$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2^3$ |
$\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{14}\times D_{12}$ | ||||||
Normalizer: | $D_{12}:D_{14}$ | ||||||
Minimal over-subgroups: | $C_{42}$ | $C_2\times C_{14}$ | $D_{14}$ | $C_{28}$ | $C_2\times C_{14}$ | $D_{14}$ | $C_7:C_4$ |
Maximal under-subgroups: | $C_7$ | $C_2$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-192$ |
Projective image | $D_6\times D_{14}$ |