Properties

Label 672.1049.48.a1.a1
Order $ 2 \cdot 7 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(2,4,3,6,8,7,5), (9,11)(10,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $F_8:C_{12}$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_8:C_6$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_3$, of order \(3\)
$\card{\operatorname{ker}(\operatorname{res})}$\(14\)\(\medspace = 2 \cdot 7 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_{28}$
Normalizer:$C_7:C_{12}$
Normal closure:$C_2\times F_8$
Core:$C_2$
Minimal over-subgroups:$C_2\times F_8$$C_7:C_6$$C_{28}$
Maximal under-subgroups:$C_7$$C_2$

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$-1$
Projective image$F_8:C_6$