Subgroup ($H$) information
| Description: | $F_8:C_3$ |
| Order: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| Generators: |
$\langle(2,4,3,6,8,7,5), (1,5)(2,3)(4,7)(6,8), (1,2)(3,5)(4,6)(7,8), (1,4)(2,6)(3,8)(5,7), (2,4,6)(3,7,8)\rangle$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, monomial (hence solvable), and an A-group.
Ambient group ($G$) information
| Description: | $F_8:C_{12}$ |
| Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Quotient group ($Q$) structure
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_8:C_6$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Related subgroups
| Centralizer: | $C_4$ | ||
| Normalizer: | $F_8:C_{12}$ | ||
| Complements: | $C_4$ $C_4$ | ||
| Minimal over-subgroups: | $F_8:C_6$ | ||
| Maximal under-subgroups: | $F_8$ | $C_2\times A_4$ | $C_7:C_3$ |
Other information
| Möbius function | $0$ |
| Projective image | $F_8:C_{12}$ |