Properties

Label 6600.x.15.a1
Order $ 2^{3} \cdot 5 \cdot 11 $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times D_{22}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}, c^{33}, a^{2}, b^{5}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{66}:C_{10}^2$
Order: \(6600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_{165}.C_{60}.C_2^3$
$\operatorname{Aut}(H)$ $(C_{11}\times A_4).C_{20}.C_2^2$
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{22}:C_{10}^2$
Normal closure:$C_{10}\times D_{66}$
Core:$C_2\times C_{110}$
Minimal over-subgroups:$C_{22}:C_{10}^2$$C_{10}\times D_{66}$
Maximal under-subgroups:$C_2\times C_{110}$$C_5\times D_{22}$$C_2\times D_{22}$$C_2^2\times C_{10}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{33}:C_{10}$