Subgroup ($H$) information
| Description: | $C_{220}:C_5$ |
| Order: | \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Generators: |
$a^{30}, b^{11}, a^{60}, a^{24}, b^{5}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.
Ambient group ($G$) information
| Description: | $C_{55}:C_{120}$ |
| Order: | \(6600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
| Description: | $C_6$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{55}.C_{10}.C_2^5$ |
| $\operatorname{Aut}(H)$ | $D_{110}:C_{20}$, of order \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \) |
| $W$ | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
Related subgroups
| Centralizer: | $C_{60}$ | |||
| Normalizer: | $C_{55}:C_{120}$ | |||
| Minimal over-subgroups: | $C_{55}:C_{60}$ | $C_{55}:C_{40}$ | ||
| Maximal under-subgroups: | $C_{110}:C_5$ | $C_{220}$ | $C_{11}:C_{20}$ | $C_5\times C_{20}$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $1$ |
| Projective image | $C_3\times F_{11}$ |