Properties

Label 6600.d.6.a1
Order $ 2^{2} \cdot 5^{2} \cdot 11 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{220}:C_5$
Order: \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{30}, b^{11}, a^{60}, a^{24}, b^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.

Ambient group ($G$) information

Description: $C_{55}:C_{120}$
Order: \(6600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{55}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $D_{110}:C_{20}$, of order \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{60}$
Normalizer:$C_{55}:C_{120}$
Minimal over-subgroups:$C_{55}:C_{60}$$C_{55}:C_{40}$
Maximal under-subgroups:$C_{110}:C_5$$C_{220}$$C_{11}:C_{20}$$C_5\times C_{20}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3\times F_{11}$