Properties

Label 6567.b.6567.a1.a1
Order $ 1 $
Index $ 3 \cdot 11 \cdot 199 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(6567\)\(\medspace = 3 \cdot 11 \cdot 199 \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the Frattini subgroup (hence characteristic and normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $C_{199}:C_{33}$
Order: \(6567\)\(\medspace = 3 \cdot 11 \cdot 199 \)
Exponent: \(6567\)\(\medspace = 3 \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 11$.

Quotient group ($Q$) structure

Description: $C_{199}:C_{33}$
Order: \(6567\)\(\medspace = 3 \cdot 11 \cdot 199 \)
Exponent: \(6567\)\(\medspace = 3 \cdot 11 \cdot 199 \)
Automorphism Group: $C_2\times F_{199}$, of order \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
Outer Automorphisms: $C_2\times C_{18}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 11$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_{199}$, of order \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{199}:C_{33}$
Normalizer:$C_{199}:C_{33}$
Complements:$C_{199}:C_{33}$
Minimal over-subgroups:$C_{199}$$C_{11}$$C_3$

Other information

Möbius function$-199$
Projective image$C_{199}:C_{33}$