Properties

Label 6561.957.2187.d1
Order $ 3 $
Index $ 3^{7} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(2187\)\(\medspace = 3^{7} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rr} 28 & 0 \\ 0 & 28 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_9^3.C_3^2$
Order: \(6561\)\(\medspace = 3^{8} \)
Exponent: \(27\)\(\medspace = 3^{3} \)
Nilpotency class:$5$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_9\wr C_3$
Order: \(2187\)\(\medspace = 3^{7} \)
Exponent: \(27\)\(\medspace = 3^{3} \)
Automorphism Group: $C_9^2.C_3^3.C_6^2$
Outer Automorphisms: $C_3^2.C_6^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Nilpotency class: $5$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_9).C_3^5.C_3^3.C_2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_9^3.C_3^2$
Normalizer:$C_9^3.C_3^2$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_9$$C_9$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_9\wr C_3$