Properties

Label 656.52.2.a1
Order $ 2^{3} \cdot 41 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{82}$
Order: \(328\)\(\medspace = 2^{3} \cdot 41 \)
Index: \(2\)
Exponent: \(82\)\(\medspace = 2 \cdot 41 \)
Generators: $b, c, d^{2}, d^{41}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^2\times D_{82}$
Order: \(656\)\(\medspace = 2^{4} \cdot 41 \)
Exponent: \(82\)\(\medspace = 2 \cdot 41 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{41}.C_{40}.C_2^3.\PSL(2,7)$
$\operatorname{Aut}(H)$ $(C_{41}\times A_4).C_{20}.C_2^2$
$\card{\operatorname{res}(S)}$\(39360\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 41 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{41}$, of order \(82\)\(\medspace = 2 \cdot 41 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times D_{82}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_2^2\times D_{82}$
Maximal under-subgroups:$D_{82}$$C_2\times C_{82}$$C_2^3$

Other information

Number of subgroups in this autjugacy class$14$
Number of conjugacy classes in this autjugacy class$14$
Möbius function$-1$
Projective image$D_{82}$