Properties

Label 6536.b.344.a1.a1
Order $ 19 $
Index $ 2^{3} \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{19}$
Order: \(19\)
Index: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Exponent: \(19\)
Generators: $a^{1376}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $19$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{6536}$
Order: \(6536\)\(\medspace = 2^{3} \cdot 19 \cdot 43 \)
Exponent: \(6536\)\(\medspace = 2^{3} \cdot 19 \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,19,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{344}$
Order: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Automorphism Group: $C_2^2\times C_{42}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2^2\times C_{42}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6\times C_{126}$
$\operatorname{Aut}(H)$ $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{6536}$
Normalizer:$C_{6536}$
Complements:$C_{344}$
Minimal over-subgroups:$C_{817}$$C_{38}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_{344}$