Subgroup ($H$) information
Description: | $C_2^2\times D_4$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(204120\)\(\medspace = 2^{3} \cdot 3^{6} \cdot 5 \cdot 7 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$\left[ \left(\begin{array}{rrrrrr}
2 & 2 & 2 & 1 & 2 & 2 \\
0 & 1 & 2 & 1 & 2 & 2 \\
2 & 1 & 2 & 0 & 1 & 1 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 2 & 2 & 1 & 1 & 2 \\
1 & 0 & 1 & 2 & 0 & 2
\end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr}
2 & 1 & 1 & 0 & 2 & 1 \\
0 & 1 & 2 & 1 & 2 & 2 \\
0 & 1 & 0 & 2 & 1 & 1 \\
0 & 2 & 2 & 1 & 0 & 2 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 2
\end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
1 & 2 & 0 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 & 2 & 0 \\
2 & 2 & 1 & 1 & 0 & 2
\end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr}
2 & 2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 & 2 & 0 & 0 \\
1 & 1 & 2 & 1 & 0 & 0 \\
2 & 1 & 0 & 2 & 1 & 2 \\
1 & 0 & 1 & 2 & 0 & 2
\end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \right]$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
Description: | $\PSOMinus(6,3)$ |
Order: | \(6531840\)\(\medspace = 2^{8} \cdot 3^{6} \cdot 5 \cdot 7 \) |
Exponent: | \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Derived length: | $1$ |
The ambient group is nonabelian, almost simple, and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\PGammaU(4,3)$, of order \(26127360\)\(\medspace = 2^{10} \cdot 3^{6} \cdot 5 \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
$W$ | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $51030$ |
Möbius function | not computed |
Projective image | $\PSOMinus(6,3)$ |