Properties

Label 648000.w.360._.BN
Order $ 2^{3} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{3} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times C_{15}:F_5$
Order: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Index: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $b^{3}d^{48}e^{3}f^{6}, d^{12}e^{3}, d^{40}f^{10}, d^{40}f^{5}, c^{3}d^{42}e, e, c^{2}d^{48}e^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^3.C_3^3:S_4$
Order: \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_4^2:\He_3.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times \GL(2,3)\times C_5^2:C_4.S_5$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$15$
Möbius function not computed
Projective image not computed