Subgroup ($H$) information
| Description: | $C_3^3$ |
| Order: | \(27\)\(\medspace = 3^{3} \) |
| Index: | \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \) |
| Exponent: | \(3\) |
| Generators: |
$d^{40}, c^{4}d^{20}, f^{10}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
| Description: | $C_5^3.C_{12}^2.S_3^2$ |
| Order: | \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \) |
| Exponent: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_5:F_5^2:D_6$ |
| Order: | \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Automorphism Group: | $F_5^3:D_6$, of order \(96000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \) |
| Outer Automorphisms: | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $4$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5^3.C_{12}^2.(C_{12}\times S_3^2)$ |
| $\operatorname{Aut}(H)$ | $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \) |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Möbius function | not computed |
| Projective image | not computed |