Properties

Label 648000.bf.240._.BE
Order $ 2^{2} \cdot 3^{3} \cdot 5^{2} $
Index $ 2^{4} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Index: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ac^{3}d^{15}e^{3}f^{9}, d^{12}e^{6}f^{6}, b^{2}c^{3}d^{49}e^{5}f^{8}, e^{10}, b^{3}, e^{3}f^{9}, d^{40}e^{10}f^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_5^3.C_3^3:S_4$
Order: \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.F_5^3:D_6$, of order \(2592000\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_{15}^2.C_{12}.C_2^3$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$80$
Möbius function not computed
Projective image not computed