Subgroup ($H$) information
Description: | $C_{15}^2:D_6$ |
Order: | \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \) |
Index: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Generators: |
$ac^{3}d^{15}e^{3}f^{9}, d^{12}e^{6}f^{6}, b^{2}c^{3}d^{49}e^{5}f^{8}, e^{10}, b^{3}, e^{3}f^{9}, d^{40}e^{10}f^{10}$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $D_5^3.C_3^3:S_4$ |
Order: | \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \) |
Exponent: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3.F_5^3:D_6$, of order \(2592000\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{3} \) |
$\operatorname{Aut}(H)$ | $C_{15}^2.C_{12}.C_2^3$ |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $80$ |
Möbius function | not computed |
Projective image | not computed |