Properties

Label 6480.ce.4.a1.a1
Order $ 2^{2} \cdot 3^{4} \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_3^3:A_4$
Order: \(1620\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $\langle(4,9)(6,8), (10,14,12,13,11), (4,9)(5,7), (3,9,4), (1,4,7,6,3,2,8,9,5)(10,12,11,14,13), (1,6,8)(3,4,9), (2,7,5)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_5\times C_3^3:S_4$
Order: \(6480\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$W$$C_2\times C_3^3:S_4$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$D_5\times C_3^3:S_4$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$D_5\times C_3^3:A_4$$C_5\times C_3^3:S_4$$(C_3^2\times C_{15}):S_4$
Maximal under-subgroups:$C_{15}:S_3^2$$C_3^3:C_{15}$$C_3^3:A_4$$C_5\times A_4$

Other information

Möbius function$2$
Projective image$D_5\times C_3^3:S_4$