Properties

Label 648.723.6.f1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_3^2$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(7,8,9)(10,12,11), (2,3)(5,6)(7,10)(8,12)(9,11), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (4,5,6)(10,12,11), (1,2,3)(4,6,5)(7,8,9)(10,12,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^3:D_{12}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^4:C_2$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{res}(S)$$S_3^3:C_2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3^2:S_3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3^2:S_3$
Normal closure:$C_3^2:S_3^2$
Core:$C_3^2:C_6$
Minimal over-subgroups:$C_3^2:S_3^2$$S_3^2:S_3$
Maximal under-subgroups:$C_3^2:C_6$$C_3^2:C_6$$S_3^2$$S_3^2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3^3:D_{12}$