Subgroup ($H$) information
| Description: | $C_3^2\wr C_2$ |
| Order: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(7,8,9)(10,12,11), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (4,6,5), (4,5,6)(10,11,12), (1,2,3)(4,6,5)(7,8,9)(10,12,11)\rangle$
|
| Derived length: | $2$ |
The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_3^3:D_{12}$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3^4:C_2$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
| $\operatorname{Aut}(H)$ | $C_3^2:\GL(2,3)\times \GL(2,3)$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_6^2:D_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
| $W$ | $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
Other information
| Möbius function | $2$ |
| Projective image | $C_3^3:D_{12}$ |