Properties

Label 648.723.4.a1.a1
Order $ 2 \cdot 3^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\wr C_2$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(7,8,9)(10,12,11), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (4,6,5), (4,5,6)(10,11,12), (1,2,3)(4,6,5)(7,8,9)(10,12,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^3:D_{12}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^4:C_2$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)\times \GL(2,3)$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6^2:D_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^3:D_{12}$
Minimal over-subgroups:$C_3\wr C_2^2$$C_3^2:S_3^2$$C_3\wr C_4$
Maximal under-subgroups:$C_3^4$$C_3^2:C_6$$C_3^2:C_6$$S_3\times C_3^2$$S_3\times C_3^2$$C_3^2:C_6$

Other information

Möbius function$2$
Projective image$C_3^3:D_{12}$