Subgroup ($H$) information
| Description: | $C_3^3$ | 
| Order: | \(27\)\(\medspace = 3^{3} \) | 
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Exponent: | \(3\) | 
| Generators: | 
		
    $\langle(4,5,6)(7,8,9), (4,6,5), (1,2,3)(4,6,5)(7,8,9)(10,12,11)\rangle$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_3^3:D_{12}$ | 
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3^4:C_2$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) | 
| $\operatorname{Aut}(H)$ | $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \) | 
| $\operatorname{res}(S)$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(81\)\(\medspace = 3^{4} \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $4$ | 
| Möbius function | $0$ | 
| Projective image | $C_3^3:D_{12}$ |