Properties

Label 648.616.36.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{3}, a, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times A_4\times \He_3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_3\times A_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_6^2.D_6$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_6^2:C_6$
Normalizer:$C_2\times A_4\times \He_3$
Complements:$C_3\times A_4$
Minimal over-subgroups:$C_2\times \He_3$$C_3^2\times C_6$$C_2\times \He_3$$C_6^2$
Maximal under-subgroups:$C_3^2$$C_6$$C_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-12$
Projective image$C_3^2\times A_4$