Properties

Label 648.616.3.c1
Order $ 2^{3} \cdot 3^{3} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times \He_3$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(3\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{3}, d^{2}, c^{2}, c^{3}, d^{3}, a$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, and metabelian.

Ambient group ($G$) information

Description: $C_2\times A_4\times \He_3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_6^2.D_6$
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)\times \GL(3,2)$, of order \(72576\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_3^3$, of order \(27\)\(\medspace = 3^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_2\times A_4\times \He_3$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$C_2\times A_4\times \He_3$
Maximal under-subgroups:$C_2^2\times \He_3$$C_2^2\times \He_3$$C_2^2\times \He_3$$C_2\times C_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3^2\times A_4$