Subgroup ($H$) information
| Description: | $C_3\times C_6$ | 
| Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $d^{3}, a^{2}, c^{2}$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_3^3:S_4$ | 
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\times C_6^2:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) | 
| $\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
| Centralizer: | $C_6^2:C_6$ | |||
| Normalizer: | $C_6^2:C_6$ | |||
| Normal closure: | $C_6^2$ | |||
| Core: | $C_3^2$ | |||
| Minimal over-subgroups: | $C_3^2\times C_6$ | $C_6^2$ | $C_6^2$ | $C_3\times C_{12}$ | 
| Maximal under-subgroups: | $C_3^2$ | $C_6$ | $C_6$ | 
Other information
| Number of subgroups in this autjugacy class | $3$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $C_3:S_4$ |