Subgroup ($H$) information
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Index: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$d^{3}, c^{2}d^{2}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_3^3:S_4$ |
Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_3\times C_6^2:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_3\times C_6^2$ | ||
Normalizer: | $C_3\times C_6^2$ | ||
Normal closure: | $C_6^2$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $C_3\times C_6$ | $C_3\times C_6$ | $C_2\times C_6$ |
Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
Number of subgroups in this autjugacy class | $6$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_3^3:S_4$ |