Properties

Label 648.55.8.a1.a1
Order $ 3^{4} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_9$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $b^{2}, c^{7}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $3$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_3\times C_6).D_{18}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^4.C_3.C_2^3$
$\operatorname{Aut}(H)$ $C_3^3:S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3\times S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$(C_3\times C_6).D_{18}$
Complements:$D_4$
Minimal over-subgroups:$C_3^2:C_{18}$$C_3^2:C_{18}$$C_3^2:D_9$
Maximal under-subgroups:$C_3^3$$C_3\times C_9$$C_3\times C_9$

Other information

Möbius function$0$
Projective image$(C_3\times C_6).D_{18}$