Subgroup ($H$) information
| Description: | $C_3^2:C_9$ |
| Order: | \(81\)\(\medspace = 3^{4} \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(9\)\(\medspace = 3^{2} \) |
| Generators: |
$b^{2}, c^{7}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $3$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $(C_3\times C_6).D_{18}$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $D_4$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_3^4.C_3.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_3^3:S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_3\times S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| $W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $(C_3\times C_6).D_{18}$ |