Properties

Label 648.55.6.c1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{18}$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, d^{2}, d^{3}, c^{7}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $(C_3\times C_6).D_{18}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^4.C_3.C_2^3$
$\operatorname{Aut}(H)$ $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{18}$
Normalizer:$C_9:D_{12}$
Normal closure:$C_2\times C_3^2:C_{18}$
Core:$C_3\times C_{18}$
Minimal over-subgroups:$C_2\times C_3^2:C_{18}$$C_9:D_{12}$
Maximal under-subgroups:$C_3\times C_{18}$$S_3\times C_9$$C_2\times C_{18}$$C_6\times S_3$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3^2:D_{18}$