Properties

Label 648.463.3.b1.b1
Order $ 2^{3} \cdot 3^{3} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:C_6$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}, d^{2}, c^{2}, c^{3}, a^{2}b, d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3\times C_6^2:C_6$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^2.D_6^2$
$\operatorname{Aut}(H)$ $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times C_6^2:C_6$
Complements:$C_3$ $C_3$ $C_3$ $C_3$ $C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_3\times C_6^2:C_6$
Maximal under-subgroups:$C_2^2\times \He_3$$C_3^2:D_6$$C_3^2:C_{12}$$C_6^2:C_2$$C_6\wr C_2$
Autjugate subgroups:648.463.3.b1.a1648.463.3.b1.c1

Other information

Möbius function$-1$
Projective image$C_3^2:C_6^2$