Properties

Label 648.407.54.g1
Order $ 2^{2} \cdot 3 $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:C_4$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab, b^{6}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $S_3\times \He_3:C_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\GL(2,3).C_2^6$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$S_3\times C_{12}$
Normal closure:$(C_3\times \He_3):C_4$
Core:$C_6$
Minimal over-subgroups:$C_3:C_{12}$$C_3^2:C_4$$C_4\times S_3$
Maximal under-subgroups:$C_6$$C_4$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^2:S_3^2$