Properties

Label 648.297.6.i1.c1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_3^2$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ad, d^{2}, b^{3}, b^{2}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_3^2:D_{18}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^4.C_3.C_2^3$
$\operatorname{Aut}(H)$ $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_3:S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3:S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6:S_3^2$
Normal closure:$C_3^2:D_{18}$
Core:$C_3^2:C_6$
Minimal over-subgroups:$C_3^2:D_{18}$$C_6:S_3^2$
Maximal under-subgroups:$C_3^2:C_6$$C_3^2:C_6$$C_3^2:C_6$$S_3^2$$S_3^2$$S_3^2$
Autjugate subgroups:648.297.6.i1.a1648.297.6.i1.b1648.297.6.i1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_2\times C_3^2:D_{18}$