Properties

Label 648.297.36.q1.b1
Order $ 2 \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_9$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $ab, b^{2}c^{4}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_2\times C_3^2:D_{18}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^4.C_3.C_2^3$
$\operatorname{Aut}(H)$ $C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\operatorname{res}(S)$$C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_9$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times D_{18}$
Normal closure:$C_3^2:D_9$
Core:$C_3$
Minimal over-subgroups:$C_3\times D_9$$D_{18}$
Maximal under-subgroups:$C_9$$S_3$
Autjugate subgroups:648.297.36.q1.a1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_2\times C_3^2:D_{18}$