Subgroup ($H$) information
| Description: | $C_6:D_6$ | 
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| Index: | \(9\)\(\medspace = 3^{2} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $a^{9}, c^{2}, b^{3}c^{3}, c^{3}, b^{2}$ | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
| Description: | $C_6^2:C_{18}$ | 
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_9$ | 
| Order: | \(9\)\(\medspace = 3^{2} \) | 
| Exponent: | \(9\)\(\medspace = 3^{2} \) | 
| Automorphism Group: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3\times C_6^2:S_3^2$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) | 
| $\operatorname{Aut}(H)$ | $S_4\times C_3^2:\GL(2,3)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $W$ | $C_3^2:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \) | 
Related subgroups
| Centralizer: | $C_2\times C_6$ | ||||
| Normalizer: | $C_6^2:C_{18}$ | ||||
| Complements: | $C_9$ $C_9$ | ||||
| Minimal over-subgroups: | $C_6^2:C_6$ | ||||
| Maximal under-subgroups: | $C_6^2$ | $C_6:S_3$ | $C_6:S_3$ | $C_2\times D_6$ | $C_2\times D_6$ | 
Other information
| Möbius function | $0$ | 
| Projective image | $C_6^2:C_{18}$ | 
