Properties

Label 648.293.2.a1.a1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:C_9$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a^{2}, c^{3}, b^{3}, c^{2}, a^{6}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_6^2:C_{18}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times C_6^2:S_3^2$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_6^2.C_3^3.D_6$
$\operatorname{res}(\operatorname{Aut}(G))$$C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$S_3\times A_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_6^2:C_{18}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_6^2:C_{18}$
Maximal under-subgroups:$C_3\times C_6^2$$C_3^2.A_4$$C_3^2.A_4$$C_3^2:C_9$

Other information

Möbius function$-1$
Projective image$C_6^2:C_6$