Subgroup ($H$) information
| Description: | $C_6\times S_3$ | 
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $a, d^{3}, c^{2}, b^{6}d^{2}$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $C_6^2:D_9$ | 
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.(S_3\times S_4)$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) | 
| $\operatorname{Aut}(H)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $9$ | 
| Möbius function | $0$ | 
| Projective image | $C_3^2.S_4$ | 
