Properties

Label 648.277.24.d1.a1
Order $ 3^{3} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9:C_3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $bd^{8}, c^{2}d^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $(C_3^2\times A_4):S_3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9:C_3^2:S_4$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\operatorname{res}(S)$$C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^3:S_3$
Normal closure:$C_3^2.A_4$
Core:$C_3^2$
Minimal over-subgroups:$C_3^2.A_4$$C_3\wr C_3$$C_9:C_6$
Maximal under-subgroups:$C_3^2$$C_9$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-3$
Projective image$(C_3^2\times A_4):S_3$