Properties

Label 64538880.a.4.a1
Order $ 2^{6} \cdot 3 \cdot 5 \cdot 7^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^5:(C_2^4:A_5)$
Order: \(16134720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\langle(29,32,34,30,33,35,31), (1,4,6,2,5,7,3), (1,10,2,11)(3,9,5,12)(4,13,6,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, and perfect (hence nonsolvable). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_7^5.C_2^5.S_5$
Order: \(64538880\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 7^{5} \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^5:(C_2\wr S_5\times C_3)$, of order \(193616640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{5} \)
$\operatorname{Aut}(H)$ $C_7^5:(C_2\wr S_5\times C_3)$, of order \(193616640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{5} \)
$W$$C_7^5.C_2^5.S_5$, of order \(64538880\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 7^{5} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_7^5.C_2^5.S_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_7^5.C_2^5.S_5$