Properties

Label 645120.g.70.C
Order $ 2^{10} \cdot 3^{2} $
Index $ 2 \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6.D_6^2$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Index: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,5)(3,4)(8,15,10,12)(9,13,14,11), (8,9,10,14)(11,12,13,15), (1,4)(3,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $S_7\times C_2\wr D_4$
Order: \(645120\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.C_2^2.A_7.C_2$
$\operatorname{Aut}(H)$ $C_5^4:D_4:C_2$, of order \(221184\)\(\medspace = 2^{13} \cdot 3^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$D_4^2.(D_6\times S_4)$
Normal closure:$S_7\times C_2\wr C_2^2$
Core:$C_2\wr C_2^2$

Other information

Number of subgroups in this autjugacy class$70$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed